Gigabit Kits Course
Welcome and Introduction

Summer 1998

Jonathan Turner
Washington University
Computer Science Department

http://www.arl.wustl.edu/~jst/gigatech/kits.html

Gigabit Network Technology Distribution

● Motivation
 » systems research requires low-level access and control
 - detailed understanding of system behavior
 - ability to modify and extend system capabilities
 » commercial systems poorly suited to systems research
 - constrained by standards and commercial requirements
 - technical details considered proprietary
 - unwillingness to support users with non-standard needs

● Target participants
 » systems researchers (networking, distributed systems, OS, programming environments)
 » applications researchers (HPC applications, multimedia, virtual reality)
 » college faculty (use in laboratory-oriented systems courses)
Gigabit Network Kits

- Plan to distribute about 50 gigabit network kits to 30 groups
 - eight port switch (OC-3C, G-link line cards)
 - six APIC-based NICs with PCI, G-link and ribbon cable interfaces
 - software (test suite, switch controller, signaling, APIC driver)
 - training (two week intensive course for network managers)
 - documentation (software, hardware manuals and source)
- STS Technologies producing kits - additional parts can be purchased
- Follow-on workshops for sharing experiences and results
- Switches to be shipped in August, September with APICs to follow later

Potential Uses of Gigabit Kits

- **End-to-end research**
 - parallel and distributed applications on gigabit ATM base
 - distributed systems (shared memory, CORBA, network OS, ...)
 - workstation clusters for inexpensive parallel computing
 - ATM signaling APIs for native ATM applications
 - multimedia applications, real-time multicast distribution
- **Internet research**
 - IP routing on ATM, IP switching
 - packet routing and queueing in gigabit networks
 - IP signaling (RSVP, Mbone)
- **ATM research**
 - signaling and switch control, network monitoring & management
 - cell level flow control (explicit rate, credit) and queue management
 - other new capabilities (reliable multicast support, VC switch on frame boundaries, fault tolerance, performance enhancements)
Purpose of the Course

- Help program participants get started using kits.
- Cover principles of operation of switches, NICs and associated software.
- Describe APIs available for systems/ application software development.
- Provide hands-on experience so that participants can install, configure and use all hardware and software.
- Give participants a chance to interact, share ideas and learn from each other.

Resources for participants:

- http://www.arl.wustl.edu/~jst/gigatech/kits.html
- mailing list: gigabitkits@arl.wustl.edu
 - join list to get updates
 - send mail to list with questions, comments, feedback

Agenda

Day 1 (Monday)
AM WUGS Architecture - Jon Turner
PM IPP, OPP and SE Details - Andy Fingerhut

Day 2 (Tuesday)
AM Operational Scenarios - John DeHart & Andy Fingerhut
PM Switch Control Software - John DeHart

Day 3 (Wednesday)
Switch Laboratory Session - How to use system that’s up and running

Day 4 (Thursday)
APIC Architecture - Zubin Dittia

Day 5 (Friday)
AM APIC Software - Zubin Dittia
PM APIC Laboratory

Day 6 (Saturday)
Laboratory open for experimentation & ARL staff available for Q&A

Day 7 (Sunday)
rest

Day 8 (Monday)
AM APIC & Switch Hardware Details
Will Eatherton, Dave Richard, Tom Chaney
PM Coming Attractions

Day 9 (Tuesday)
Lab Session - Creating and Running Simple Applications

Day 10 (Wednesday)
Lab Session - Installation & Configuration of Kits

Day 12 (Thursday)
Consulting & Open Lab Time

Jonathan Turner 9/4/98 5
Logistics

- Parking
 - parking passes on windshield
 - yellow permit spaces
 - please return passes on last day, so we can use for next session
 - on your own
 - options include food court on campus and Delmar Loop
 - keep receipts for reimbursement

Washington University Gigabit Switch (WUGS)

- Eight port configuration
 - two dual OC-3 line cards
 - six G-link line cards (1.2 Gb/s)
 - other line card configurations possible
- Supports remote configuration using control cells
- Open architecture enables experimental modification at all levels
ATM Port Interconnect Chip

- Two independent ATM ports at 1.2 Gb/s each
 - daisy-chain configuration for direct device-to-network connection
 - general interconnection topology for cluster computing
 - 16 bit Utopia interface for direct connection and switch interface
- High performance data transfers to applications
 - zero copy transfers using DMA with header stripping and page remapping
 - direct user control of APIC channels with fully secure operation